MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .


 / = [          ] ,     [  ]    .

 = [          ] ,     [  ]    .


Através das descrições quânticas da radiação eletromagnética propostas por Albert Einstein e Max Planck, o físico dinamarquês Niels Bohr desenvolve seu modelo atômico a partir de quatro postulados:[3]

  1. Os elétrons que circundam o núcleo atômico existem em órbitas que têm níveis de energia quantizados.
  2. A energia total do elétron (cinética e potencial) não pode apresentar um valor qualquer e sim, valores múltiplos de um quantum.[1]
  3. Quando ocorre o salto de um elétron entre órbitas, a diferença de energia é emitida (ou suprida) por um simples quantum de luz (também chamado de fóton), que tem energia exatamente igual à diferença de energia entre as órbitas em questão.
  4. As órbitas permitidas dependem de valores quantizados (bem definidos) de momento angular orbital, L, de acordo com a equação

 / = [          ] ,     [  ]    .

onde n = 1, 2, 3, ... é chamado de número quântico principal e h é a constante de Planck.[4]

A regra 4 afirma que o menor valor possível de n é 1. Isto corresponde ao menor raio atômico possível, de 0,0529 nm, valor também conhecido como raio de Bohr. Nenhum elétron pode aproximar-se mais do núcleo do que essa distância.

O modelo de átomo de Bohr é às vezes chamado de modelo semi-clássico do átomo, porque agrega algumas condições de quantização primitiva a um tratamento de mecânica clássica. Este modelo certamente não é uma descrição mecânica quântica completa do átomo. A regra 2 diz que as leis da mecânica clássica não valem durante um salto quântico, mas não explica que leis devem substituir a mecânica clássica nesta circunstância. A regra 4 diz que o momento angular é quantizado, mas não diz por quê.





O tunelamento quântico foi desenvolvido a partir do estudo da radioatividade. Em meio ao crescente sucesso da mecânica quântica na terceira década do século 20, nada era mais impressionante do que o entendimento do Efeito Túnel — a penetração de ondas de matéria e a transmissão de partículas através de uma barreira potencial. Depois de algum tempo, o estudo mais aprofundado envolvendo tunelamento, supercondutoressemicondutores e a invenção do microscópio de tunelamento, por exemplo, renderam à física cinco prêmios Nobel.[6]

Em 1927, Friedrich Hund foi o primeiro a tomar nota da existência do Efeito Túnel em seus trabalhos sobre o potencial de poço duplo.[6] George Gamow, em 1928, resolveu a teoria do decaimento alfa de um núcleo via tunelamento, com uma pequena ajuda matemática de Nikolai Kochin.[7]

Influenciado por Gamow, Max Born desenvolveu a teoria do tunelamento, percebendo-a como uma consequência da mecânica quântica, aplicável não só à física nuclear, mas também a uma série de outros sistemas diferentes. Os físicos Leo EsakiIvar Giaever e Brian Josephson descobriram, respectivamente, o tunelamento de elétrons em semicondutores e em supercondutores, e a supercorrente através de junções em supercondutores, o que lhes rendeu o Prêmio Nobel de Física no ano de 1973.[8]

Explicação do fenômeno

Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.

Uma analogia comumente utilizada para explicar o fenômeno do tunelamento quântico consiste em se imaginar uma colina e um trenó subindo em direção ao seu cume. À medida que o trenó vai subindo a colina, parte de sua energia cinética transforma-se em energia potencial gravitacional U. Quando o cume da colina é atingido, o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar até o outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para a direita com energia E, como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplista o efeito Túnel.[9]

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, pode-se considerar três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as três regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[5]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 ,  / = [          ] ,     [  ]    .

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia (Ub – E) entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[9]





Por volta dos meses superprodutivos de 1905-1906, quando Einstein formulou não apenas a sua teoria da capacidade de calor, mas também a teoria da relatividade, ele encontra um espaço de tempo, para dar outra contribuição fundamental à física moderna. A sua realização foi vincular a hipótese quântica de Planck ao fenômeno do efeito fotoelétrico, a emissão dos elétrons de metais quando são expostos à radiação ultravioleta.

Einstein apontou que todas as observações se encaixavam caso o campo eletromagnético fosse quantificado, e que consistia em feixes de energia de magnitude . Estes pacotes foram mais tarde nomeados de fótons por G.N. Lewis, e esse termo passou a ser utilizado. Einstein viu o efeito fotoelétrico como resultado de uma colisão entre um projétil de entrada, um fóton de energia , e um elétron presente no metal. Esta imagem explica o carácter instantâneo do efeito, porque até mesmo um fóton pode participar numa colisão. Também foi responsável pelo limite de frequência porque uma energia mínima (que normalmente é denotada por  e chamada 'função trabalho' para o metal, o análogo da energia de ionização de um átomo) deve ser fornecida em uma colisão antes que a ejeção do fóton possa ocorrer; por conseguinte, apenas radiação para a qual    pode ser bem-sucedida. A dependência linear da energia cinética, , do fotoelétron da frequência da radiação é uma consequência simples da conservação de energia, o que implica que:

  / = [          ] ,     [  ]    .

Se os fótons tiverem um caráter semelhante a uma partícula, então eles devem possuir um momento linear, p. A expressão relativista que relaciona a energia de uma partícula com à sua massa e momento é

  / = [          ] ,     [  ]    .

onde c é a velocidade da luz. No caso de um fóton,  e , então:

  / = [          ] ,     [  ]    .

Esse momento linear deve ser detectável se a radiação cair em um elétron, pois uma transferência parcial do momento durante a colisão deve aparecer como uma alteração do comprimento de onda dos fótons.

Experimentos que evidenciaram o efeito fotoelétrico

Hertz (1887)

Em 1887, Heinrich Hertz usou um circuito em conjunto com um centelhador. Ele observou que quando a luz incidia no centelhador do receptor era facilitada a produção de centelhas.[5]

Philipp von Lenard (1900)

Em 1900, Philipp von Lenard fez um experimento com raios catódicos, no qual no catodo faz-se incidir luz ultravioleta. Um potenciostato controlava a diferença de potencial entre o catodo e o anodo, medindo a corrente do sistema[10]. Com esse experimento, Lenard observou que a corrente máxima era proporcional a intensidade da luz o que era esperado, no entanto, não havia uma intensidade mínima para que a corrente fosse nula gerando conflito com a teoria clássica[11].

Mais tarde, quando Einstein propôs que a luz se comportava de maneira localizada no espaço e possuía energia h (fóton), os experimentos anteriores foram justificados e comprovaram a teoria quântica. No experimento de Lenard, por exemplo, a intensidade da luz diretamente proporcional a corrente gerada, é justificado pelo fato de que uma luz de maior intensidade significa maior quantidade de fótons e mais elétrons sendo ejetados da superfície do metal, o que consequentemente significa mais elétrons em movimento e por isso a corrente observada era maior.

Equações


Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:

Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido

Mais detalhes em : Energia do fóton

Algebricamente:

 / = [          ] ,     [  ]    .

Onde:

  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •  é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.

Notas:

Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.



O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.

Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:

 / = [          ] ,     [  ]    .

onde:

 é a temperatura crítica,
a densidade da partícula,
a massa por bóson,
constante de Planck,
constante de Boltzmann, e
função zeta de Riemann ≈ 2,6124.

Comments